Gujarati
Hindi
7.Gravitation
hard

An object is projected vertically up from the earth's surface with velocity $\sqrt {Rg}$ where $R$ is the radius of the earth and $'g'$ is the acceleration due to earth on the  surface of earth. Find the maximum height reached by the object.

A

$\frac{R}{2}$

B

$R$

C

$2R$

D

$3R$

Solution

Let the object of mass $\mathrm{m}$ projected with speed

$\mathrm{u}=\sqrt{\mathrm{Rg}}$ reach a height $'h'$ above surface of

earth.

Then from conservation of energy

$\frac{1}{2} m u^{2}-\frac{G M m}{R}=-\frac{G M m}{R+h}$

$\mathrm{u}^{2}=\mathrm{g} \mathrm{R}=\frac{\mathrm{GM}}{\mathrm{R}}$

$\Rightarrow \frac{1}{2} \frac{\mathrm{GMm}}{\mathrm{R}}-\frac{\mathrm{GMm}}{\mathrm{R}}=-\frac{\mathrm{GMm}}{\mathrm{R}+\mathrm{h}}$ or $\mathrm{h}=\mathrm{R}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.